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Understanding the distribution of herbivore damage among leaves and
individual plants is a central goal of plant–herbivore biology. Commonly
observed unequal patterns of herbivore damage have conventionally been
attributed to the heterogeneity in plant quality or herbivore behaviour or
distribution. Meanwhile, the potential role of stochastic processes in struc-
turing plant–herbivore interactions has been overlooked. Here, we show
that based on simple first principle expectations from metabolic theory,
random sampling of different sizes of herbivores from a regional pool is suf-
ficient to explain patterns of variation in herbivore damage. This is despite
making the neutral assumption that herbivory is caused by randomly feed-
ing herbivores on identical and passive plants. We then compared its
predictions against 765 datasets of herbivory on 496 species across 116° of
latitude from the Herbivory Variability Network. Using only one free par-
ameter, the estimated attack rate, our neutral model approximates the
observed frequency distribution of herbivore damage among plants and
especially among leaves very well. Our results suggest that neutral stochastic
processes play a large and underappreciated role in natural variation in
herbivory and may explain the low predictability of herbivory patterns.
We argue that such prominence warrants its consideration as a powerful
force in plant–herbivore interactions.
1. Introduction
The distribution of herbivore damage has long been noted for its tremendous
variability across time and space, and among leaves and individual plants
[1–3] (figure 1a,d). This variability has crucial ecological and evolutionary con-
sequences, including reducing plant tolerance of herbivory [4], strengthening
herbivore interactions [5], and modifying herbivore community assembly [6].
Importantly, it is a prerequisite for natural selection that gave rise to the
plethora of plant defence phenotypes in nature. Explanations for such hetero-
geneity have conventionally been attributed to heterogeneity in plant quality
[7–9] or interactions among herbivores [10,11], and most of the literature on
plant–herbivore biology indeed seeks deterministic, trait-based predictors of
herbivore damage patterns within and across plants. Despite great advances
in our understanding of plant–herbivore interactions [12], however, the
explanatory power of well-established plant traits remains surprisingly and
consistently low [13].

In face of the challenge of predicting herbivore damage patterns, the field
has generally proceeded as if more research will reveal the key trait-based pro-
cesses governing herbivore damage patterns. An alternative hypothesis is that
predicting herbivory has been difficult because the process of herbivory con-
tains much inherent neutral stochasticity that is unrelated to heterogeneity in
plant quality and interactions among herbivores [14,15]. Recent work has high-
lighted the importance and dominance of process-based stochasticity in lifetime
reproductive success [16,17], but we still have a poor understanding of its role
in plant–herbivore ecology and evolution. For instance, patterns of herbivore
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Figure 1. Example empirical distributions of among-leaf (a,b) and among-plant (c,d) herbivore damage in the HerbVar dataset. (e) The probability density function
of cumulative proportion herbivore damage ϕT according to the neutral model with different attack rates λ. The two probability point masses at 0 and 1 are
indicated by triangles. To better visualize the mix of discrete and continuous probabilities, we plotted the binned probability of different herbivore damage classes
at 5% intervals for different values of attack rates ( f–h).
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damage are often used as evidence for an array of biological
phenomena, including induced plant defences [2,18],
informed herbivore movement and plant communication
[19], variation in plant defence [1] and selection regimes
[20], without testing if those patterns could have arisen
from process stochasticity. A key advance that would
improve our ability to distinguish between herbivore
damage patterns caused by plant traits and purely neutral
stochastic processes is a process-based null model for
damage distributions based on first principles. Such a
model could characterize damage distributions under func-
tional neutrality, allowing for the evaluation of mechanisms
omitted from the model and generate testable predictions
for a wide range of behaviours, not previously recognized
as being related.

Here, we derive a neutral process-based model of herbi-
vore damage using simple and realistic assumptions about
the accumulation of damage on leaves from randomly
sampled herbivores from a regional species pool. Our
model accords with the recent push to integrate stochasticity
in community ecology [21] and represents a mere logical
extension to well-established macroecological laws on meta-
bolic allometry [22–25]. We then compare our model
predictions to global observations of herbivore damage
patterns for 496 species using data from the Herbivory Varia-
bility Network. As a foil to common wisdom, our model
assumes that plants are identical, unchanging, passive and
fed upon randomly by herbivores. This means plants do
not exhibit induced defences or differ in palatability, and her-
bivores do not aggregate or repel each other. We focused on
the distribution of damage at the among-leaf (leaves belong-
ing to the same individual) and among-plant scales
(conspecific individuals in a population), with emphasis on
the level of variability as quantified by the summary statistic,
coefficient of variation (CV). We chose this feature of the dis-
tribution to focus our discussion on because recent work
highlighted variation in plant–herbivore interactions in eco-
evolutionary outcomes [26]. However, we seek to predict
and describe the entire distribution. Our goal is not to test
whether plant–herbivore interactions are neutral—they are
not—but to identify the manners and conditions where our
a priori neutral expectations succeed or fail to match reality
[27]. We addressed three main questions: (1) Can a neutral
model generate the high variation in herbivore damage
common in nature [3,26] and predict changes in this vari-
ation? (2) How does the neutral model deviate from
observed damage patterns? (3) What explains model devi-
ations? We might expect model deviation to be predicted
by plant traits more than environmental variables for
instance, if plants evolved traits that altered the neutral
dynamics of herbivore damage. Taken together, our study
seeks to identify key ecological processes in the generation
of herbivore damage that give rise to emergent patterns
shaping plant–herbivore interactions.
2. Results
(a) Neutral model
First, we derive a probability distribution of herbivore
damage at the among-leaf and among-plant scales. Our
model assumes that the observed proportion damage on a
leaf or plant represents the accumulation of leaf area removed
over a number of discrete feeding events. At each feeding
event, the proportion leaf area removed increases with the
whole-body metabolic rate of a randomly sampled herbivore
individual from a regional herbivore pool. This metabolic rate
increases with the body size of the herbivore. In our model,
larger herbivores are less abundant and less speciose within
this regional pool.

Thus, the cumulative proportion damage ϕT (hereafter as
‘proportion damage’) is the sum of proportion leaf area loss



Table 1. Median and 95% quantiles of measures of model fit. CV r2

corresponds to the proportion variance in observed log CV explained by
predicted log CV. Constrained R2 corresponds to the proportion of variance in
ten statistical probes explained by whether the distribution is predicted or
observed in an RDA. At the among-leaf scale, this is the proportion of
remaining variance after removing 41% of total variance attributed to
individual survey identity. ΔAICC show the relative fit of the neutral model
compared to generic non-neutral null models of herbivore damage, a three-
parameter hurdle truncated lognormal (HTLN) and four-parameter zero-one-
inflated beta (ZOIB) distribution. Lower values indicate better fits for all
metrics except CV r2 and ΔAICC, for which higher values indicate better fits.

among leaves among plants

KS statistic 0.20 [0.2, 0.50] 0.18 [0.067, 0.43]

% KS test p < 0.05 1.6 [1.5, 1.8] 22 [20, 24]

CV r2 0.86 0.70

constrained R2 0.012 0.014

ΔAICC (HTLN: neutral) 2.3 [−19, 12] −16 [−290, 14]
ΔAICC (ZOIB: neutral) 4.5 [−32, 17] −9.5 [−280, 21]
distribution sample size 13 [10, 51] 60 [28, 82]

total distributions 23 648 739
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in all events k until the whole leaf is consumed. Adhering to
our assumption of neutrality, we assume the number of feed-
ing events k follows a Poisson distribution with an identical
rate λ across all leaves and the occurrence of each feeding
event is independent. The distribution of cumulative pro-
portion damage ϕT is therefore a truncated compound
Poisson distribution:

fT(k) ¼

Pk
i
fi,

Pk
i
fi � 1

1,
Pk
i
fi . 1:

8>>><
>>>:

ð2:1Þ

Let ϕ be the proportion leaf area removed by a randomly
sampled herbivore from a regional herbivore pool in a single
feeding event, with a lower and upper bound ϕm and ϕM,
respectively. Macroecological studies have shown that many
important biological variables, including population density
[22], species richness [23,24] and metabolic rate [25], scale
as a power law with body size with specific allometric coeffi-
cients. Assuming the energy requirement of a herbivore is
proportional to leaf area consumption, a probability density
function of ϕ with allometric coefficient α = 14/9 can be
derived from these scaling laws (see electronic supplemen-
tary material, appendix, model derivation and numerical
approximation):

P(f) ¼ 1� a

fa(f1�a
M � f1�a

m )
: ð2:2Þ

Equation (2.2) is also known as the truncated Pareto
distribution and models the probability of drawing some
proportion leaf area removed in a feeding event. The
bounds of ϕ can be chosen a priori and are discussed further
in §4a. Hence, the distribution of cumulative proportion
damage can be fully described by a single unknown
parameter, the attack rate by herbivores λ. In electronic sup-
plementary material, appendix, model derivation and
numerical approximation, we extend this model to the
presence/absence of damage, which unlike (2.1) can be
expressed in closed form.

We found that stochastic sampling of different sizes of
herbivores from a regional pool alone is sufficient to generate
realistic herbivore damage distributions with high degrees
of variability (figure 1e–h). This variability also changes pre-
dictably along herbivory intensity. For analytical tractability,
we assume proportion damage ϕT≪ 1 (e.g. a plant with
many leaves), though the results are qualitatively similar in
simulations that relax this assumption (electronic supple-
mentary material, appendix, asymptotic behaviour). As a
repeated additive process, the central limit theorem ensures
that proportion damage becomes approximately normally
distributed when the attack rate λ becomes very large [28].
Therefore, given a large λ and a generic unitless inequality
index I , such as the Gini index (c ¼ ffiffiffiffi

p
p

), CV (c = 1), or
Hoover index (c ¼ ffiffiffiffiffiffi

2p
p

), the following holds (electronic
supplementary material, appendix, asymptotic behaviour):

I [fT] �
ffiffiffiffiffiffiffiffiffiffiffiffi
E[f2]

p

c
ffiffiffi
l

p
E[f]

: ð2:3Þ

Hence, any variable associated with a greater attack rate,
or similarly, mean herbivore damage, should also be asso-
ciated with a lower measure of variability, declining by a
factor 1=
ffiffiffi
l

p
, all else being equal. Examples of reported associ-

ations between damage variability and predictors of interest
(e.g. time of year, plant size, herbivore density) may therefore
as well be explained by their associations with mean damage
(electronic supplementary material, table S1). We thus
caution the interpretation of damage variability without
considering the mean–variance relationship and ‘statistical
pleiotropy’ more broadly, where one factor affects multiple
features of a statistical distribution.
(b) Comparing neutral and observed distributions
Next, we compared the predictions of the neutral model to a
global empirical dataset of proportion herbivore damage at
the among-leaf and among-plant scales. The dataset was con-
tributed by greater than 160 researchers from the Herbivory
Variability Network and consisted of 765 field surveys of
496 species, spanning across 116° of latitude and all nine
Whittaker biomes (electronic supplementary material, appen-
dix, HerbVar dataset, figure S1). All surveys were collected
using the same protocol, where a target of 30 randomly
selected conspecific plant individuals and their nearest
conspecific neighbour within a population were visually
assessed for height and proportion damage on ten randomly
selected leaves. Plant level damage was estimated as the aver-
age damage across all sampled leaves belonging to the plant.
We only included surveys with more than 15 records for
among-plant damage, and plants with more than 10 records
for among-leaf damage. For each set of herbivory obser-
vations at the among-leaf or among-plant scale, we
parametrized our model by estimating a single unknown par-
ameter, the attack rate λ, from the data.

We found that the neutral model with only one degree of
freedom, the herbivore attack rate λ, can generate herbivore
damage distributions that are very similar to observed
damage patterns (table 1 and figure 2). Among-leaf damage,
however, resembled neutral patterns more closely than
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among-plant damage. We examined how closely the neutral
model approximates observed data across three absolute
measures of model fit. Our neutral model generated CVs
that closely matched observed among-leaf CVs (r2 = 0.86)
and somewhat less closely matched among-plant CVs (r2 =
0.70). A very low proportion of variance in ten statistical
probes (summary statistics of a distribution sensu [29]) is attrib-
uted to whether a distribution is predicted or observed (R2 =
0.012) among leaves, but this was slightly higher among
plants (R2 = 0.014). Likewise, a low proportion of Kolmo-
gorov–Smirnov (KS) tests found significant differences
between observed and neutral distributions among leaves
(1.6%), but this was higher among plants (22%). Next, we
examined the relative fit of the neutral model against alterna-
tive phenomenological non-neutral hypotheses, allowing for
strong inference (i.e. model selection) [30]. We note that
these alternative hypotheses are less parsimonious, having
three or four times as many degrees of freedom as our simpler
neutral model. They also provide only phenomenological, not
mechanistic or dynamical, insight. That is, they use patterns, as
opposed to underlying mechanisms, as model parameters;
hence, unlike our neutral model, they provide no testable
auxiliary predictions beyond the patterns of herbivore
damage. Nonetheless, they represent commonly used alterna-
tives against which to compare our first principles neutral
model. At the among-leaf scale, the neutral model found sig-
nificantly more support than a hurdle truncated lognormal
(HTLN) (median ΔAICC = 2.3) and zero-one-inflated beta
model (ZOIB) (median ΔAICC = 4.5), or non-process-based
null models, for most of the observed damage distributions



Table 2. Mean posterior standardized marginal effects (nat/s.d.) and ΔR2 of KL divergence of neutrality from observation. The 95% credible intervals are shown
in brackets (in bold if the intervals do not overlap zero). Species phylogeny accounts for phylogenetic relatedness, whereas species ID accounts for species
specific environmental or niche effects.

among leaves among plants

standardized β ΔR2 standardized β ΔR2

PI — 0.28 [0.13, 0.63] — 0.19 [0.065, 0.43]

survey ID — 0.27 [0.12, 0.63] — —

species ID — 0.19 [0.057, 0.54] — 0.23 [0.061, 0.56]

phylogeny — 0.14 [0.036, 0.47] — 0.083 [0.0038, 0.30]

MAT 0.11 [−0.067, 0.28] 0.011 [1.6 × 10−6, 0.042] 0.054 [−0.076, 0.18] 0.0074 [0, 0.031]

MAP 0.021 [−0.063, 0.11] 0.0031 [0, 0.014] −0.035 [−0.10, 0.030] 0 [0, 0.0050]

| latitude | 0.069 [−0.086, 0.23] 0.0084 [0, 0.039] 0.021 [−0.10, 0.22] 0.0021 [0, 0.016]

log plant height 0.019 [5.8 × 10−5, 0.039] 0.0011 [2.6 × 10−6, 0.0026] 0.030 [−0.040, 0.099] 0.0010 [0, 0.0066]

residual — 0.26 [0.25, 0.26] — 0.35 [0.31, 0.40]

Pagel’s λ 0.38 (p = 0.04) 0.42 (p < 0.001)
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(table 1). By contrast, at the among-plant scale, the neutralmodel
generally found less support than alternative null models
(HTLN median ΔAICC =−16; ZOIB median ΔAICC =−9.5).
These results suggest that our neutral model adequately
describes most natural damage patterns and may therefore
serve as a useful reference with which we compare observed
data against. We proceed to investigate how neutral patterns
deviate from empirical patterns below.

Leaves within a plant sustained more similar damage levels
to each other and individual plants within a population sus-
tained damage levels more different from each other than
expected by the neutral model. We evaluated this result by
comparing the CVs of observed damage distributions against
distributions generated by our neutral model and by a ran-
domization procedure. Because leaves with similar levels of
damage may be more likely to belong to the same plant
individual and each plant individual has slightly different
expected damage, we can break the non-random associations
by shuffling observed leaves within a survey among plants,
thereby generating an empirical null distribution (hereafter as
‘shuffled’ distribution). A null distribution generated this way
avoids making assumptions about the data generating process
and serves a second line of evidence alongside our neutral
model. At the among-leaf scale, observed CV is 5.1% lower
than the shuffled CV (Z=−29, p< 0.0001) and 15% lower
than the neutral model predicts (Z=−87, p< 0.0001), and the
deviation is greatest at lower CV values (figure 2a). Observed
damage values tend to be less variable, less skewed, less lepto-
kurtic, and less extreme than the neutral model expects
(electronic supplementary material, table S2; figure 2c). By con-
trast, at the among-plant scale, observed CV is 26% higher than
the shuffled CV (Z= 18, p< 0.0001) and 7.0% higher than the
neutral model predicts (Z= 5.3, p< 0.0001; figure 2b). Observed
damage values tend to be more variable, more skewed, more
leptokurtic, and more extreme than the neutral model expects
(electronic supplementary material, table S2; figure 2d). These
results further corroborate that among-leaf damage is more
even than expected by neutral dynamics and that damage is
more aggregated among plants (electronic supplementary
material, figure S2).
(c) Predictors of neutral deviations from observations
Finally, we found the deviations of neutral patterns from
observed patterns varied with plant size and phylogeny,
but not with geography and climate. We measured the devi-
ation of neutral patterns from observations in terms of
Kullback–Leibler (KL) divergence, a measure of relative
entropy, which can be interpreted as the expected additional
amount of information needed to have the neutral model
fully agree with observed data (i.e. knowledge gap). We
detected a moderate phylogenetic signal in KL divergence
at both scales (among-leaf: Pagel’s λ = 0.38; among-plant:
Pagel’s λ = 0.42; table 2; electronic supplementary material,
figure S3), suggesting unmeasured plant traits may underlie
different non-neutral damage patterns. Indeed, larger plants
had greater deviations at the among-leaf scale, albeit with
little explanatory power (table 2). By contrast, KL divergence
is not predicted by latitude, mean annual temperature and
mean annual precipitation (table 2).
3. Discussion
We show that the distribution of herbivore damage, owing to
the simple process of sampling herbivores with different
body sizes from the regional herbivore pool, can be highly
unequal among leaves and among plants. This is despite the
neutral assumption that plants are identical, unchanging, pas-
sive, and fed upon randomly by herbivores. Stated another
way, while observed patterns of herbivore damage are the
amalgamation of herbivore pressure and plant defences that
might vary across individual leaves and plants and are impor-
tant in many systems, neither process needs to be invoked to
explain the distribution of damage across individual leaves
and individual plants. Rather, the distribution of damage,
being an emergent pattern of many interacting plants and
herbivores, is largely governed by a set of simple underlying
stochastic processes, regardless of the details of the system.

We have identified this minimum process by which her-
bivory occurs, and on top of which the complexity of traits
and herbivore behaviour then play out. Although plant
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traits may account for where the neutral model deviates from
observed damage patterns, the extent of the deviations is sur-
prisingly limited. Indeed, processed-based stochasticity is
prevalent in nature [31] and may play a large role in plant–
herbivore interactions (table 2). Yet, the role of stochasticity
has been largely ignored in the plant–herbivore literature
that emphasizes traits and evolution. Our study highlights
how such a perspective shift may provide unique insights
that apply generally to plant–herbivore interactions across
broad taxonomic and geographical coverage.

That there is inherently high heterogeneity in herbivore
damage has two major implications. First, it implies that her-
bivory pressure on plants has low predictability and can lead
to the common observation that plant defence allocation fails
to match the cost of herbivory [32]. Information from ongoing
herbivore damage is thus crucial to deal with future attacks,
as exemplified by the prevalence of short-range inter-plant
communication [33], localized induced defences, and pheno-
typic plasticity [34,35]. Second, it challenges the common
assumption that variation in damage contains much biologi-
cal information of unmeasured drivers. Our model suggests
that whether a plant individual within a population sustains
high or low damage is mostly driven by luck, or it is at least
indistinguishable from luck, and the plant has limited ability
to affect its herbivore damage. Taking this view, we may
recognize the importance of herbivory, where diverse plant
defence traits nevertheless evolved [36], despite the insensi-
tivity of herbivore damage to trait differences and the
dominance of genetic drift that reduces selection efficiency
[16]. We may also recognize that trait-based approaches to
predicting plant herbivory can only take us so far, and
to its limited extent, existing studies have succeeded specta-
cularly in characterizing most non-neutral variation in
damage that can be explained. Low R2 values in herbivory
studies [13] are to be expected when damage contains high
neutral process variance. While even very small differences
in damage or fitness outcomes due to some traits represent
strong selection differentials that may lead to rapid evolution
of said traits, this does not imply the traits are predictive
of damage patterns, and raises the question whether trait-
based models are necessary to understand variations in
damage, or interactions and fitness patterns in general.

Despite the complexity of plant–herbivore interactions
which might appear intractable to describe at first sight, we
showed that simple patterns arise from two fundamental sto-
chastic processes (equations (2.1) and (2.2)). All distributions
of herbivore damage in nature belong to the same family, dif-
fering by only one parameter, the attack rate λ. This result
provides a simple framework to understand patterns of
damage, as well as the inequality of damage and its effects.
For instance, where mean damage or per unit attack rate is
lower, the higher damage inequality should select for more
plastic, rapidly inducible defence in plants because defence
allocation is otherwise difficult to match the cost of herbivore
damage. This fact may explain why smaller plants and
plants in temperate regions might be more inducible in
nature [34]. More broadly, we can leverage well-established
mean-centric plant defence theories to make predictions
about the whole distributional pattern of damage [37–39]. The-
ories based on skewness, kurtosis or variance can then be
nicely translated as an extension to existing herbivory theories
[40–42], using the neutral model as a bridge between the mean
and higher moments.
The remaining pattern not explained by neutral processes
has several important implications. That herbivore damage is
more regular among leaves than expected has long been
hypothesized as a consequence of induced responses, which
prevents successive herbivore feedings [2]. The regular spread
of this herbivore damage within plants across organs can
strongly ameliorate the negative effect of herbivory on individ-
ual plant fitness and growth by allowing for greater
physiological compensation [4]. Further, the higher than
predicted among-plant damage variability may reflect under-
lying variance in plant quality or variance in herbivore
distribution,whichwe expect a priori to begenerallyaggregated
[43]. Theoretical studies have shown that these overdispersed
feeding patterns among plants can reduce temporal fluctu-
ations and extinction risk of plant–herbivore populations, and
increase equilibrium plant population density [5]. Finally, that
observed damage patterns at the among-leaf scale resemble
neutral patterns more closely than observed patterns at the
among-plant scale could be explained by our neutral assump-
tions being more violated at the among-plant scale. This
raises the intriguing possibility that to herbivores, different
leaves within a plant may more be functionally equivalent
despite some hypotheses of sub-individual trait variation as a
plant defence [44,45] and optimal defence allocation [37].

A useful way forward to understanding plant–herbivore
dynamics is not to abandon trait-based approaches, but to
consider traits that affect the importance and nature of pro-
cess stochasticity (table 2). Such understanding can inform
the limits to the predictability of interactions and identify
when conclusions drawn from simple models of plant–herbi-
vore interactions apply. Such traits may include plant size,
leaf lifespan, palatability, and apparency, that reduce the
importance of stochasticity in herbivore damage by averaging
over a greater number of herbivore attacks [26]. Further, if sto-
chasticity itself can affect the fitness of plants and herbivores
[2–5], then there can be selection on traits that modify the pro-
pensity for process stochasticity. For instance, larger plants
sustain a greater number of attacks from herbivores, which
should reduce the variability in damage (equation (2.3)).
This means that plants that cannot cope with damage varia-
bility, such as those with a steep concave performance
function along herbivore damage intensity, may have an
advantage of being larger. Finally, understanding which
traits can alter the process of plant–herbivore interactions
beyond neutral expectations allows for greater prediction of
important emergent properties of ensemble plant–herbivore
interactions missed by traditional reductionist trait-based
approaches (figure 2). Our finding that traits and phylogeny
can predict differences between empirical and neutral
patterns sheds optimistic light on this prospect.

Our study represents an essential step in critically evaluat-
ing observed herbivore damage patterns, identifying the
contexts and manners by which observed damage patterns
are different from neutral expectations, worthy of further
investigation. Where our neutral model succeeds, it provides
a useful approximation of natural damage patterns, and else-
where, it may serve as a null against which future models
that include heterogeneity in plant traits or herbivore behav-
iour may be compared. Our study highlights the importance
of process-based stochasticity in shaping plant–herbivore
interactions; the implications for plant defence evolution and
herbivore population dynamics are yet almost entirely unex-
plored, despite their dominance in observed damage
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patterns. Just as different forms of process-based stochasticity
have been incorporated into other fields, such as community
ecology [31] and population genetics [46], plant–herbivore
biologists too must embrace it as one of the core high-level pro-
cesses that complements existing research programmes on
plant–herbivore evolutionary and functional ecology.
lishing.org/journal/rspb
Proc.R.Soc.B

291:20232687
4. Methods
(a) Model parametrization
We fitted the neutral model to each dataset using maximum like-
lihood, estimating the unknown attack rate parameter λ. For
among-leaf damage, we set the lower constraint ϕm and upper
constraint ϕM a priori as the lowest non-zero proportion
damage value in our empirical dataset (0.5%) and the highest
possible proportion damage (100%). We explore different
values of the damage bounds and their caveats in electronic sup-
plementary material, appendix, sensitivity analysis. For among-
plant damage on a plant with L leaves, the bounds are multiplied
by 1/L, as the area of a single leaf is a fraction of the whole plant
leaf area. We used the median number of leaves sampled on each
plant in a population as L.

(b) Statistical analysis
Because our neutral model does not have a closed-form solution,
we used Monte Carlo simulations in all our analyses. For each
analysis, 100 predicted neutral distributions generated using the
estimated l̂ and the original sample size were compared against
the observed proportion damage and the results averaged. All
analyses and simulations were performed in R (v. 4.2.1) [47].
Our code for the neutral model and an associated vignette are
available in our custom R package herbivar (ver. 0.2.0) on GitHub.

To quantify how well the neutral model approximates
observed data, for each dataset of proportion damage, we per-
formed a KS test, which tests whether two samples are drawn
from different distributions. We also compared ten summary stat-
istics of the observed and predicted distribution collectively in
redundancy analyses (RDA; package vegan [48]). These summary
statistics, or probes, characterize key features of a distribution
(mean, variance, skew, kurtosis, minimum, maximum, 25th quan-
tile, 50th quantile, 75th quantile, Gini coefficient), providing
informative diagnostics of model fit [29]. In the analysis at the
among-leaf scale, survey ID was added as a conditional variable,
thereby removing its effect in subsequent variance partitioning.
Absolute model performance was assessed by examining the
KS test statistic, the per cent of distributions with significant devi-
ation from neutrality (as determined by the KS test), and the r2 of
predicted versus observed CV of each dataset in a simple linear
model. We log-transformed both predicted and observed CV to
stabilize the variance and excluded surveys with zero variance.
We also examined the constrained R2 of variation in standardized
summary statistics from fitted RDA models. Lower proportion of
variance constrained by whether a distribution is predicted or
observed indicates better fit.

We quantified the relative fit of the neutral model against two
plausible non-neutral, non-process-based null models, to allow for
strong inference even if all models fit well by absolute measures.
The zero-one-inflated beta distribution extends thebetadistribution,
commonly used to model proportion damage, to handle the pres-
ence of 0’s and 1’s in proportion damage data without the need
for arbitrary transformations [49]. The hurdle-truncated-lognormal
distribution has the density function

P(x; p0,m,s) ¼
p0,
(1� p0)(1� G(x ¼ 1; m,s)),
(1� p0)g(x; m,s),

8<
:

x ¼ 0
x ¼ 1
x = 0, 1:

ð4:1Þ
It extends the lognormal distribution with density function
g(x;μ, σ) and cumulative distribution function G(x;μ, σ) to have
probability mass at zero and one. The lognormal distribution is
a reasonable candidate distribution as it can have a high positive
skew and is a limiting distribution for repeated multiplicative
processes. Both distributions were fitted to each dataset using
maximum-likelihood estimation. We compared relative fits
using sample size corrected Akaike information criterion (AICc).

To determine what empirical patterns the neutral model fails
to predict, we examined the loading scores of the constrained
axis of our RDA models. We also performed major axis regression
analysis on log-transformed observed versus predicted CVs
(package lmodel2 [50]) to examine their relationship. Accurate pre-
diction of observed CVs should have an intercept close to zero and
a slope close to one. We did not consider regression coefficients
from the ordinary least-squares regression models from which
we obtained the r2 values because they downwardly bias the
slope. We also compared the log-transformed CVs of observed,
predicted, and shuffled distributions in two linear mixed models
for among-leaf and among-plant damage (package glmmTMB
[51]). We included the type of distribution (observed, predicted
and shuffled) as a fixed effect and survey ID or plant ID nested
within survey ID as random effects. The significance of marginal
effects was tested with Wald Z-tests.

To identify the sources of deviations of neutral patterns from
observation, we calculated the average KL divergence of pre-
dicted distributions from observed distributions across 100
bootstraps (package philentropy [52]). We found the species aver-
age KL divergence and measured the phylogenetic signal in
Pagel’s λ. A likelihood ratio test was used to assess the signifi-
cance of the phylogenetic signal (package phytools [53]). We
also fitted the KL divergence in a phylogenetic generalized
linear mixed model, using a lognormal distribution and moder-
ately regularizing priors (package brms [54]). We included
absolute value of latitude, log plant height, mean annual temp-
erature and mean annual precipitation as fixed effects. These
predictors were Z-score transformed prior to fitting. Climate
data were retrieved from WorldClim (ver. 2.1) [55] using
survey site geocoordinates at a resolution of 2.5 min. Species
identity and principal investigator (PI) identity, which account
for repeated surveys of the same species and multiple surveys
conducted by the same researcher, respectively, were included
as random effects. For the analysis of KL divergence at the
among-leaf scale, we added an additional random effect of
survey identity nested within PI to account of the non-indepen-
dence of individual plants within a survey. Phylogenetic
relatedness was accounted for with a correlation structure assum-
ing Brownian motion trait evolution. The phylogenetic tree was
constructed by pruning from the most recently compiled mega-
phylogenetic tree for vascular plants (package V.PhyloMaker2,
Scenario 1 [56]). Variance partitioning of the sources of variation
in KL divergences was done by calculating the change in
residual-based R2 of selectively dropped regression terms.
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